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Abstract

A linear and weakly nonlinear stability analysis is performed for speci®c two-layer systems which have
been examined experimentally in the past for purely buoyancy driven convection. Time-dependent
oscillations arise at the ®rst onset of instability. For the water/silicone oil system, oscillations are
predicted for a range of wavelengths and depth fractions. For the Fluorinert/silicone oil system,
oscillations are theoretically predicted in a very narrow parameter range. A 3D Hopf bifurcation on a
hexagonal lattice is investigated for time-periodic patterns that arise at onset in extended domains. In
both ¯uid systems, travelling rolls, wavy rolls of type 1, and oscillating triangles are stable for most
regimes. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Two-layer systems heated from below have been investigated experimentally by Degen et al.
(1998). Marangoni e�ects are not relevant to the experimental conditions discussed, and purely
buoyancy driven convection is studied. Time-periodic oscillations were observed in rectangular
and annular channels. The presence of the interface and the coupling between the ¯uids has
generated interest in this problem from both experimentalists and theoreticians (Busse and
Sommermann, 1996; Gershuni and Zhukhovitskii, 1976; Johnson and Narayanan, 1997, 1998;
Fujimura and Renardy, 1995; Johnson et al., 1998).
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Fig. 1 is a sketch of the system geometry. In our theoretical treatment, the system is
unbounded in the horizontal directions. Distance is nondimensionalized with respect to plate
separation l� and time with l�2=k1 where k1 is the thermal di�usivity of the lower liquid. The
average value of the interface height is denoted l1: At the temperature of the top plate, each
¯uid has coe�cient of cubical expansion âi, thermal di�usivity ki, thermal conductivity ki,
viscosity mi, density ri, and kinematic viscosity ni � mi=ri: In each ¯uid, the governing
equations are the heat transport equation and the Navier±Stokes equations with the
Oberbeck±Boussinesq approximation. At the interface, we have: the continuity of velocity,
temperature, heat ¯ux and shear stress; the jump in the normal stress is balanced by interfacial
tension and curvature; and the kinematic free surface condition holds. There are six
dimensionless ratios arising from the ¯uid properties: m � m1=m2, r � r1=r2, g � k1=k2,
z � k1=k2, b � â1=â2 and l1 � l�1=l

�: We de®ne a Rayleigh number R � gâ1DTl�3=�k1n1�, a
Prandtl number P � n1=k1, and an interfacial tension parameter S � S�l�=�k1m1�, where S� is
the dimensional interfacial tension.
The base state for the system is given by a ¯at interface at z � l1, a zero velocity ®eld and a

temperature ®eld which varies linearly with z in each ¯uid. Equations governing linearized
perturbations proportional to exp�iax� st�, and the full equations required for a bifurcation
analysis are given in Chapter III of Joseph and Renardy (1993). We shall apply this to our
situation where oscillations are excited by a competition between the bulk motions in each
¯uid, with the interface remaining approximately ¯at (Busse and Sommermann, 1996; Degen et
al., 1998; Rasenat et al., 1989; Andereck et al., 1996, 1998; Renardy and Stoltz, 1999; Renardy,
1996a,b; Colinet and Legros, 1994). These time-periodic states emerge at onset, and not as
secondary bifurcations. The ¯uids were chosen by Degen et al. (1998) to satisfy two conditions.
First, the e�ective Rayleigh numbers of the ¯uids must be equal. These are R1 �
gâ1DT1l

�3
1 =�k1n1�, and R2� gâ2DT2l

�3
2 =�k2n2�, l�2� l� ÿ l�1: The continuity of heat ¯ux across the

interface ®xes the ratio DT1=DT2 to be l1=�zl2�: Using this, the ratio R1=R2 is �br�=�zmga4�,
where a � l2=l1: When this ratio is approximately 1, an oscillatory onset is intuitively expected.
This yields the depth ratio a � ��br�=�zmg��1=4: However, Renardy (1996b) has shown that this
condition alone is not su�cient for exciting time-periodic states, and a second condition

Fig. 1. Problem de®nition in 3D. The y-axis extends into the paper. Walls are situated at z � 0 with temperature
T0 � DT and at z � 1 with temperature T0: The unperturbed interface separating ¯uid 1 and ¯uid 2 is at z � l1:
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required of the system is that it be su�ciently far from self-adjoint. For large Prandtl numbers
and a non-deformable interface, it is shown that when gbr � 1, the onset is steady. Therefore,
oscillations are more likely to be found when this combination moves farther away from 1.
These criteria led to the choice of two ¯uid pairs: a layer of Fluorinert lying below a layer of
silicone oil 47v10, and silicone oil 47v2 lying over water. The properties of these ¯uids are
given by Andereck et al. (1996, 1998) and Degen et al. (1998).
For the Fluorinert/silicone oil system, the e�ective Rayleigh numbers are balanced when the

dimensionless lower liquid depth is approximately 0.43. For this system, gbr is 0.776, and
steady onsets were observed (Degen et al., 1998; Andereck et al., 1996). As the temperature
di�erence was increased in the experiments, the roll motion became irregular, and the velocity
became time-dependent in the range 0:357Rl1R0:382 at a DT roughly 0.18C above the primary
steady onset. The period of the time-dependent state was approximately 50 min at low DT: The
wavelength of the pattern was found to be roughly 14.7 mm, or dimensionless wave number
a � 5:2: Linear theory predicts that Hopf modes (time-periodic oscillations) occur at
dimensionless lower liquid depth 0.43 with periods of 50 min or longer, reminiscent of the
periods in the experiments. The weakly nonlinear theory predicts saturation in the form of
traveling rolls (Renardy, 1996b).
Since oscillations were not observed at onset for the Fluorinert/silicone oil system, a search

was conducted for another ¯uid pair, for which oscillations would occur over a wider range of
liquid depths. The guiding quantity was to make gbr as far away from 1 as possible. This led
to the choice of the water/silicone oil system (Degen, 1997). The linear theory in this paper
details this ¯uid pair, for which the experimental data were more recently investigated. Time-
dependent onsets were indeed observed experimentally for the depths predicted by linear theory
(see Section 2). However, the periods and wave numbers do not correspond.
While the experimental observation of oscillations over a wide range of lower liquid depths

may appear to indicate that the water/silicone oil system is a superior pairing for examination,
the choice of ¯uid pair is complicated by the di�culty in measuring and observing the system.
The advantage of the Fluorinert/silicone oil system and the disadvantage of the water/silicone
oil system are discussed by Degen et al. (1998).

2. Linear stability

2.1. The water/silicone oil 47v2 system

The parameters are P � 7:1, r � 1:149, m � 0:576, b � 0:1766, z � 5:44, g � 1:845, and S� �
52:5 dyn/cm (Degen, 1997). Balancing the Rayleigh numbers yields l1 � 0:7, and gbr � 0:374:
Fig. 20 of Degen et al. (1998) shows the temperature di�erences at depths 0.60, 0.67 and 0.71
for oscillatory onsets to be 0.62, 0.68, and 0.708C, respectively, and these conditions are above
the theoretically predicted criticality. Fig. 22 of Degen et al. (1998) shows the periods and wave
numbers observed in the top layer, for lower liquid depth l1 � 0:71: wavenumber a � 11:6, and
periods corresponding to Im s � 3:5±4:6:
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2.1.1. Neutral stability curves
Fig. 2 shows the trends in the critical Rayleigh number vs. wave number, and Fig. 3 shows

the Im s vs. wave number, for dimensionless lower ¯uid depths l1 � 0:62±0:71: The neutral
stability curves show possible time-periodic states in the range of wave numbers roughly 2 to 6.
The troughs of the curves are rather ¯at over many wave numbers, and the tendency from
depth 0.6 to 0.69 is that a wave number larger than 5 is the onset mode, while there is a switch
at depth 0.7, and the wave number less than 5 becomes the onset mode. This switch occurs
because the curve develops two lobes in the presence of the Hopf modes, with one lobe
descending and the other rising. The depth ratio 0.7 is unique in that the troughs of the neutral
stability curve hit two wave numbers at approximately a 2:1 ratio. This is the depth ratio
where experimental data were taken, and we would expect to see resonances and complicated
dynamics over many wave numbers. At the other depth ratios, the onset mode is steady, but
the Hopf modes exist at Rayleigh numbers very close to that of the onset mode. The critical
Rayleigh numbers and wavenumbers are shown in Fig. 4 for each depth l1:
The shortest periods are around 26 min �Im s � 4� at l1 � 0:66 and wavelength 22 mm (wave

number 3.5). The period at l1 � 0:7 and wavelength 13 mm (wave number 5.7) is 70 min
�Im s � 1:5). Measurements reported by Degen et al. (1998) at depth fraction 0.71 are shown in
their Figs 21 and 22. They show plots of period vs. DT and wave number vs. DT for DT from
roughly 0.7 to 28C. The lowest value of DT which they record corresponds to Rayleigh
numbers just above 20,000 and we see from Fig. 2 that for a Rayleigh number of 20,000, many
wave numbers are already unstable. Experimental data in Fig. 20 of Degen et al. (1998) show
the critical values of DT at lower liquid depths 0.6, 0.67 and 0.71 which give Rayleigh numbers
19,000, 20,800 and 21,500, respectively. Comparing with the neutral stability curves in Figs. 2

Fig. 2. Water/silicone oil system. Neutral stability curves. Critical Rayleigh number vs. dimensionless wave number
a, at (a) lower liquid depths l1 � 0:61 (- -), 0.62 (-.), 0.63 (line), (b) 0.64 (- -), 0.65 (-.), 0.66 (line), (c) 0.67 (- -), 0.68
(-.), 0.69 (line), (d) 0.7 (- -), 0.71 (line).
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and 3, we would expect to see the oscillations induced at lower liquid depths 0.67 and 0.71.
The available data concerning the oscillations are shown in their Fig. 21 for depth 0.71, which
plots the primary oscillation period and primary wave numbers. We need more information
than currently available, such as graphs of the power spectral density for their signals or some
form of Fourier Transform of their observed periods, to interpret the experiments in light of

Fig. 3. Water/silicone oil system. Im s vs. dimensionless wave number a along neutral stability curves, at lower
liquid depths l1 � 0:63 (A), 0.64 (B), 0.65 (C), 0.66 (D), 0.67 (E), 0.68 (F), 0.69 (G), 0.7 (H).

Fig. 4. (a) Fluorinert/silicone oil system. Critical Rayleigh number vs. dimensionless lower liquid depth l1: (b)

Fluorinert/silicone oil system. Critical values for dimensionless wave number a vs. dimensionless lower liquid depth
l1: (c) Water/silicone oil system. Critical Rayleigh number vs. dimensionless lower liquid depth l1: (d) Water/silicone
oil system. Critical values for dimensionless wave number a vs. dimensionless lower liquid depth l1:
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the theory. Such graphs would show more clearly the relative strengths of the periods that are
observed. Our interpretation of the data given for depth 0.71 is that at the Rayleigh number of
21,500, it is possible for the recorded wave number around 11, corresponding to a trough of
the neutral stability curve, to be unstable, as well as its subharmonic at wave number 5.5,
which is close to a time-periodic mode. If the lower liquid depth were .01 or .02 less, then there
would be a resonance of the steady mode at wave number 11 with a subharmonic mode at
wave number 5.5 which is time periodic with the period lying in the range shown in Fig. 22 of
Degen et al. (1998). There is some scatter in their Fig. 22 and periods range from 15 to 40 min.
The onset mode at each depth fraction is shown in Fig. 4 and are steady. However, when

the Rayleigh number is increased slightly above onset, especially around l1 � 0:7, the Hopf
modes become unstable as well.
Around l1 � 0:69, the critical Rayleigh number is almost independent of wave number over a

wide range of wave numbers, complicating a full theoretical analysis. Time-periodic oscillations
around wave number 5 to 6, and steady modes around wave number 4, as well as from 10 to
11, are unstable under experimental conditions. When the Rayleigh number is pushed above
onset, the fastest growing modes are those at wave numbers 10 to 11. At l1 � 0:69, The Im s
maximum is 2.6, yielding a period of 47 min. At l1 � 0:7, Im smax � 1:6, giving 77 min.
As l1 decreases to around 0.62, the oscillatory modes move to longer wavelengths which

have much higher critical Rayleigh numbers (cf. Fig. 3).

2.1.2. Temperature contours
From lower liquid depths of 0.60±0.69, the perturbation temperature ®eld for the onset

mode is dominant in the top layer. At lower liquid depths of 0.70±0.75, the perturbation
temperature ®eld consists of one large roll covering both layers.
At l1 � 0:7, the neutral stability curve of Fig. 2 shows a unique situation, where more than

one wave number would in practice become unstable together. Speci®cally, at wave number
3.7, the critical Rayleigh number is 12,119 while at wave number 8.9, it is 12,135. For the
critical curves in Fig. 4, we have chosen strictly the lowest onset Rayleigh number and
corresponding wave number. Depth 0.7 also has the oscillatory modes becoming unstable at
wave numbers 5.6±5.8, with 5.8 at Rayleigh number 14,868. These Rayleigh numbers occur for
temperature variations of less than 0.58C, while experimental data were taken slightly above
this. The behavior described above for depth fractions 0.70±0.75 can be explained by the
presence of two troughs in the neutral stability curves. For the trough with the higher wave
numbers, the perturbation temperature ®eld is dominant in the top layer.
As evidenced by the neutral stability curves in Fig. 2, depth fractions between 0.62 and 0.70

possess oscillatory onsets. For wave numbers slightly less than those of the oscillatory range,
the temperature ®eld consists of a large roll covering both layers as shown in Fig. 5(a) at wave
number 5.4. At the mode with the maximum Im s, the perturbation temperature ®eld consists
of linked rolls between the two layers as shown in Fig. 5(b) for wave number 5.7. Slightly
above the wave number for oscillations, the perturbation temperature ®eld consists of rolls in
each ¯uid as shown in Fig. 5(c) at wave number 6. For higher wave numbers, the roll in the
top begins to dominate.
The overall behavior of the perturbation temperature ®eld has four stages as the wave

number increases from steady modes, through time-periodic modes, then back to steady
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modes: (1) a single large roll over the entire depth as in Fig. 5(a), (2) a linked roll as in
Fig. 5(b), (3) separate rolls in each layer as in Fig. 5(c), and (4) roll in the top ¯uid only.

2.1.3. Velocity ®eld
For those depths that possess oscillatory onsets, three distinct patterns emerge: thermal

coupling, mechanical coupling, and a transition state that exists as a blend of the two types of
coupling. (For de®nitions of thermal and mechanical coupling, we refer the reader to Degen et
al. (1998), Busse and Sommermann (1996), Rasenat et al. (1989) and Andereck et al. (1996)).
For depth fractions from 0.65 to 0.70, a distinct three-step pattern is evident as the wave
number increases: (1) at wave numbers less than those of the Hopf region, thermal coupling as
in Fig. 6(a), (2) at wave numbers in the Hopf region, transition state as in Fig. 6(b), (3) at
wave numbers greater than those of the Hopf region, mechanical coupling as in Fig. 6(c).
These results are summarized in Table 1.

2.2. The Fluorinert/silicone oil 47v10 system

For the Fluorinert/silicone oil 47v10 system, the plate separation is taken as 1.26 cm,
P � 406:3, b � 0:93, g � 0:40, r � 2:09, z � 0:54, m � 2:93, G � �RP�=�â1DT � � 1:7� 1010: For
an interfacial tension of 7 dyn/cm (Burkersroda et al., 1994). S � 94:2� 103: The linear
stability results change very little with change in interfacial tension (at 20 dyn/cm, the results
are essentially the same). The experimental measurements in Fig. 3.16 and Fig. 3.17 of Degen
(1997) show that at depth l1 � 0:375, oscillations are recorded for a � 5:2, with periods
between 45 and 80 min. The experiments were performed for Rayleigh numbers 36,000 and
larger. The linear theory predicts that steady modes become unstable at wave number 5.2, as
shown in Fig. 4.

Fig. 5. Water/silicone oil system. Perturbation temperature contour plots for dimensionless lower liquid depth

l1 � 0:7: Oscillations occur at dimensionless wave numbers a � 5:6±5:8: (a) Wave number 5.4. Steady mode. (b)
Wave number 5.7. Oscillatory mode. (c) Wave number 6. Steady mode.
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Fig. 6. Water/silicone oil system. Velocity vector plots at dimensionless lower liquid depth l1 � 0:69, showing trends
in the location of the rolls as the wave number passes through the Hopf range. (a) R � 13,823: Dimensionless wave
number a � 4:5: Rolls are thermally coupled. (b) R � 14,205: Wave number 5.2, inside the Hopf range. Rolls are in

a transition regime. (c) R � 12,817: Wave number 5.9, greater than those of the Hopf range. Rolls are mechanically
coupled. A summary of behavior at other depth fractions is given in Table 1. The plots extend one wavelength in
the x-direction, and over z � 0 to 1 vertically.

Table 1
Summary of velocity vector ®eld behavior for water/silicone oil system for depth fractions 0.65±0.70a

l1 a

Thermal coupling Transition Mechanical coupling

0.62 NA 0.9 2.0
0.63 NA 1.5 2.5

0.64 NA 2.6 3.0
0.65 1.0 2.8 4.0
0.66 2.0 3.3 4.5
0.67 2.5 4.0 5.0

0.68 3.5 4.5 5.5
0.69 4.5 5.2 5.9
0.70 5.4 5.7 6.0

a Data taken at wave number less than Hopf range (thermally coupled rolls), inside the Hopf range (transition
regime), and greater than Hopf range (mechanically coupled rolls). The velocity ®elds are illustrated in Fig. 6.
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2.2.1. Neutral stability curves
The neutral stability curves in Figs. 7 and 8 illustrate that there is a small interval of wave

numbers from 3.2 to 4.2 at the lower liquid depth of 0.43 which are oscillatory.

2.2.2. Temperature contours
Perturbation temperature contour plots are shown in Figs. 9 and 10. For the critical mode at

l1 � 0:36±0:40, the roll in the upper layer is dominant, with little going on in the bottom layer,
as shown in Fig. 9(a) for depth 0.36. The convection in the bottom layer begins to increase as
the depth fraction changes from 0.36 to 0.40 (cf. 9(b) for depth 0.41). A transition takes place
between lower liquid depths 0.41 and 0.42, and for depths 0.42 to 0.44, the dominant
temperature ®eld of the onset mode is in the bottom layer, as shown in Fig. 9(c).
We next examine the oscillatory regime at depth 0.43. Oscillatory onsets occur along the

neutral stability curve at l1 � 0:43 for wave numbers 3.2±4.2, a very narrow range. For a wave
number slightly less than 3.2 (see Fig. 10(a) at a � 3� the motion consists of steady rolls in the
upper layer. Within the oscillatory regime, (see Fig. 10(b) at a � 3:7), contours of the
perturbation temperature ®eld are joined for both layers in the shape of linked rolls. Slightly
above wave number 4.2 (see Fig. 10(c) at a � 5� the motion is dominated by steady rolls in the
bottom ¯uid. Thus, the temperature ®eld is dominant in one of the ¯uids, not both, as the
oscillatory regime is approached, and the rolls then become of equal magnitude in both layers
within the oscillatory regime.

2.2.3. Velocity ®eld
Unlike the water/silicone system, at wave numbers less than those of the Hopf region, the

Fig. 7. Fluorinert/silicone oil 47v10 system. Neutral stability curves for the onset modes at dimensionless lower
liquid depths l1 � (a) 0.36 (- -), 0.37 (-.), 0.38, (b) 0.39 (- -), 0.40 (-.), 0.41, (c) 0.42 (- -), 0.43 (-.), 0.44. Plots show
critical Rayleigh number vs. dimensionless wave number a:
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system exhibits moderate mechanical coupling, not thermal coupling, as shown in Fig. 11(a).
At wave numbers less than those of the Hopf region, the motion takes place almost entirely in
the top layer of ¯uid, and so the mechanical coupling behavior may not be detectable
experimentally. In the Hopf region, the system is in transition as shown in Fig. 11(b), and at
wave numbers greater than those of the Hopf region, mechanical coupling is once again
evident, as shown in Fig. 11(c).

Fig. 8. Fluorinert/silicone oil 47v10 system. Imaginary part of eigen-value s vs. dimensionless wave number a, along
neutral stability curve at lower liquid depth l1 � 0:43, showing oscillatory onsets. The other depths shown in Fig. 7
have real onsets, not oscillatory.

Fig. 9. Fluorinert/silicone oil system. Perturbation temperature contour plots for steady critical modes. (a)
Dimensionless lower liquid depth l1 � 0:36, dimensionless wave number a � 4:2: (b) l1 � 0:41, wave number 4.6. (c)
l1 � 0:44, wave number 5.8.
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3. Hopf bifurcation in 3D

The group of Degen et al. (1998) has on-going plans to do experiments in larger cells, and
this motivated a theoretical analysis for solutions which are doubly periodic with respect to a
hexagonal lattice. Other types of spatial periodicities such as square (Tokaruk et al., 1998) or
rhombic are equally worth investigating. The symmetry of the hexagonal lattice causes a
sixfold degeneracy of the critical eigenvalue. Hopf bifurcations of this type have been
investigated extensively (Roberts et al., 1986; Renardy and Renardy, 1988; Joseph and
Renardy, 1993), and we merely present results here. There are eleven qualitatively di�erent
types of bifurcating solutions: standing rolls, standing hexagons, standing regular triangles,
standing patchwork quilt, travelling rolls, travelling patchwork quilt of type 1, travelling
patchwork quilt of type 2, oscillating triangles, wavy rolls of type 1, wavy rolls of type 2, and
twisted patchwork quilt. The visualization of these states, for the reader unfamiliar with them,
is given in the color plates of Joseph and Renardy (1993). Table 2 lists the stable solutions
which we found. Traveling rolls, wavy rolls of type 1, and oscillating triangles appear in each
system. The water/silicone oil system also exhibits the traveling patchwork quilt of type 2 for
three situations, which are at the low wave number side of the Hopf range for lower liquid
depths 0.62, 0.65 and 0.66. At the lower end of the depth fractions, 0.62 and 0.63 show a
preference for travelling rolls. As the depth fraction increases, more exotic solutions such as the
wavy rolls of type 1, and oscillating triangles also appear. At depth fraction 0.7 which is the
largest depth fraction displaying a Hopf range, oscillating triangles are stable for wave
numbers throughout the Hopf regime.

Fig. 10. Fluorinert/silicone oil system. Perturbation temperature contour plot of critical mode. Dimensionless lower
liquid depth l1 � 0:43: (a) Steady mode at wave number a � 3:0, slightly less than oscillatory onset shown in Figs. 7

and 8. (b) Wave number 3.7 at oscillatory onset shown in Fig. 8. (c) Steady mode at wave number 5.0, slightly more
than oscillatory onset shown in Fig. 8.
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4. Conclusion

We have investigated two speci®c systems, motivated by experimental observations (Degen et
al., 1998). The ®rst is composed of silicone oil Rhodorsil 47v2 lying over water. Experimental
data by Degen et al. (1998) were taken around depth fraction 0.6±0.71. Recorded periods at
depth fraction 0.71 show a primary period around 25 min, with scatter up to 40 min. The
primary wave number is 10 with scatter from 1 to 80. Our linearised stability analysis at depth
fraction 0.7 predicts the largest growth rate modes are (i) steady modes of wavenumber 4 to 5,

Fig. 11. Fluorinert/silicone oil system. Velocity vector plots at dimensionless lower liquid depth l1 � 0:43, showing
trends in the location of the rolls. (a) R � 34,959: Wave number a � 3:0, less than the Hopf range. Rolls are
moderately mechanically coupled. (b) R � 30,065: Wave number 3.7, inside the Hopf range. Rolls are in a transition
regime. (c) R � 24,044: Wave number 5.0, greater than the Hopf range. Rolls are mechanically coupled. The plots

show one wavelength in the x-direction and z extending from 0 to 1.
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(ii) steady modes 9 to 10, and (iii) oscillatory modes, period 50 min at wave number 5.4. Much
of the action occurs in the water layer for the oscillatory range and for the steady modes
around wave number 5, but the higher wave number around 10 induces roll action in the top
layer. Experimental visualisation is stated to be di�cult in the lower water layer (Degen, 1997);
thus, one possibility is that wave number 11 was observed in the upper layer representing the
steady mode, which has a wavelength half that of the oscillatory mode (Fig. 22(b) of Degen et
al. (1998); records some secondary wave numbers in this range), together with a record of the
oscillation period for wave number 5.5. There is high sensitivity to the depth fraction. At depth
fraction 0.69, the period shortens to 30 min, and at depth 0.68±25 min. Therefore, we suggest
that controlled experiments be aimed at lower liquid depths 0.65 to 0.68 and at a speci®c wave
number targetting the oscillatory range. Even at these depths, it is likely that a band of wave

Table 2
Pattern formation results for water/silicone oil system and Fluorinert/silicone oil system

l1 R a jIm sj Stable solution

Water±silicone oil system
0.62 880328 0.3 2.3 Traveling patchwork quilt (2)

500657 0.4 2.2 Traveling rolls
226181 0.6 2.0 Traveling rolls

103236 0.9 1.7 Traveling rolls
0.63 91186 1 3.2 Traveling rolls

43246 1.5 3 Traveling rolls

22823.7 2.2 1.17 Traveling rolls
0.64 120035 0.9 3.3 Traveling rolls and wavy rolls (1)

33947 1.8 3.7 Traveling rolls

19184 2.6 2.8 Oscillating triangles
0.65 74985 1.2 2.1 Traveling patchwork quilt (2)

18601 2.8 3.8 Wavy rolls (1) and oscillating traingles

15237 3.3 2.5 Wavy rolls (1) and oscillating triangles
0.66 26314 2.3 2.1 Traveling patchwork quilt (2)

16295 3.3 3.9 Wavy rolls (1) and oscillating triangles
14146 3.8 2.8 Traveling rolls and wavy rolls (1)

0.67 18008 3.2 1.98 Oscillating triangles
14458 4 3.6 Traveling rolls and wavy rolls (1)
13499 4.4 1.6 Oscillating triangles

0.68 15119 4.1 2.2 Traveling rolls
14202 4.5 3.2 Traveling rolls and wavy rolls (1)
13728.5 4.8 2.6 Traveling rolls and wavy rolls (1)

0.69 14506.8 4.9 2.06 Traveling rolls
14205 5.2 2.5 Traveling rolls and wavy rolls (1)
14068 5.4 1.3 Oscillating triangles

0.70 14918 5.6 1.3 Oscillating triangles
14888 5.7 1.6 Oscillating triangles
14868 5.8 1.3 Oscillating triangles

Fluorinert±silicone oil system

0.43 30065 3.7 2.1 Traveling rolls and wavy rolls (1)
28512 4 1.4 Oscillating triangles
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numbers are unstable together, but at least these do not su�er from two troughs in the neutral
stability curves.
The second system is composed of silicone oil Rhodorsil 47v10 lying on Fluorinert. We ®nd

that oscillatory instabilities are possible, but in a much narrower range of parameters than in
the silicone oil/water system. The experimental data of Degen et al. (1998) recorded oscillations
of roughly the same wave number and period as we predict but the depth fraction is slightly
di�erent and observations were above criticality. This study raises the following questions for
future experimental consideration: whether the width of the experimental cell a�ects the critical
conditions, and whether the values of the physical properties of the ¯uids, such as viscosity,
need to be re-measured. Oscillations are predicted at a higher Rayleigh number than criticality,
but if the wave number is restricted, then the oscillations would be the critical modes, just as in
the water/silicone oil system. For both systems, therefore, experiments for oscillatory onsets
need to be seeded for speci®c wave numbers.
A theoretical model for steady onset, followed by oscillations at slightly higher Rayleigh

number, is given by Renardy et al. (1999). Time-periodic solutions, which have been analyzed
for the Hopf bifurcation case (see Section 3), again arise, but some can now be excited as a
secondary bifurcation from steady solutions rather than as a bifurcation directly from the rest
state. For the Fluorinert/silicone oil system, a temporally chaotic regime with triangular spatial
symmetry is predicted. Whether these patterns would be observable in experiments remains to
be investigated.
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